O.P.Code: 18EC0403

(iii) $X(\omega)=e^{-2\omega}u(\omega)$.

R18

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations June-2024 SIGNALS & SYSTEMS

(Electronics and Communications Engineering) Time: 3 Hours Max. Marks: 60 **PART-A** (Answer all the Questions $5 \times 2 = 10$ Marks) a How are the signals are classified? 1 CO₁ L₁ 2M**b** What are the Dirichlet's conditions? State them. CO₂ L12Mc What is Nyquist rate and Nyquist interval? CO₂ L12M **d** State Time convolution and Frequency convolution theorem. CO₃ L12Me Find Z-transform and ROC of $x(n)=(1/2)^n u(n-2)$. CO4 L1 2M**PART-B** (Answer all Five Units $5 \times 10 = 50$ Marks) UNIT-I 2 What are the basic operations on signals? Illustrate with an example. **CO1** L2 10M 3 Find whether the following signals are periodic or not? If periodic CO₁ L3 10M determine the fundamental Period. (b) $3\sin 200\pi t + 4\cos 100t$ (a) $\sin 12\pi t$ (c) $\sin 10\pi t + \cos 20\pi t$ (e) $e^{j4\pi t}$ $(d)\sin(10t+1)-2\cos(5t-2)$ UNIT-II a Derive the expression for Fourier transform from Fourier series. 4 CO₂ L₃ **5M b** Find the Fourier transform of the following CO₂ L₃ 5M (i) sgn(t)(ii) sin ω₀t (iii)cos ω₀t (iv) 1(Constant Amplitude) OR 5 Find the inverse Fourier transform of the following signals CO₂ L3 10M (i) $X(\omega)=4(j\omega)+6/(j\omega)^2+6(j\omega)+8$ (ii) $X(\omega)=1+3(j\omega)/(j\omega+3)^2$

UNIT-III

a Find the Nyquist Rate and Nyquist Interval of the following signals
(i)x(t)=1+cos 2000 πt + sin 4000 πt
(ii) x(t)=10 sin 40πt cos 300πt
(iii) x(t)=10 sin 40πt cos 300πt
(iv) x(t)=10 sin 40πt cos 30π

7	State and prove the sampling theorem for the band-limited signals with	CO3	L3	10M
	the help of graphical representation.			
	UNIT-IV			
8	a State and prove the Parseval's theorem for energy signals.	CO4	L3	5M
	b Derive and Define the properties of Energy Spectral Density.	CO4	L3	5M
	OR			
9	a Find the autocorrelation of the signal $x(t) = a\sin(\omega_0 t + \theta)$.	CO4	L3	5M
	b Distinguish the ESD and PSD.	CO4	L3	5M
	UNIT-V			
10	a Find the inverse z-transform of	CO4	L3	10M
	$X(z)=3z^{-1}/(1-z^{-1})(1-2z^{-1})$			
	(a) If ROC; $ z > 2$ (b) If ROC; $ z < 1$ (c) If ROC; $1 < z < 2$			
	OR			
11	a Prove that the final value of $x(n)$ for $X(z) = z^2/(z-1)(z-0.2)$ is 1.25 and	CO4	L3	5M
	its final value is unity?			
	b Find the inverse Z-transform of $X(z) = z^{-1} / (3-4z^{-1}+z^{-2})$, ROC: $ z > 1$	CO4	L3	5M
	*** END ***			